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This paper provides the frequency domain analysis of the probabilistic repre- 
sentation of the cluster model for dielectric relaxation in dipolar systems. 
It is proved that the restriction (0, 1 ) experimentally found for both the power- 
law coefficients n and m is the necessary and sufficient condition to obtain the 
low- and high-frequency power-law behavior. Consequently, in both frequency 
regions the Kramers-Kr6nig-compatible frequency-independent rules are 
fulfilled. Moreover, in contrast to the empirical functions proposed to fit the 
experimental data, the dielectric susceptibility derived from the stochastic 
considerations does cover the full range of the observed dielectric responses. 

KEY W O R D S :  Dipolar materials; dielectric susceptibility; asymmetric Lrvy- 
stable distributions; max-stable distributions; power-law dielectric response. 

1. I N T R O D U C T I O N  

Dielectric relaxation phenomena in complex condensed systems have 
been the subject of experimental and theoretical investigations for many 
years, tHTI. This is not only due to the need for an understanding of the 
electrical properties of various technological materials, but it has also been 
realized that the basic physics of the dielectric response leads to interesting 
questions about the theoretical description of physical phenomena in dis- 
ordered systems. From the empirical studies of dielectric properties of 
complex conclensed materials it became clear that the functions which 
describe their dynamical behavior deviate considerably from the predic- 
tions of the Debye exponential relaxation laws. Several empirical functions 
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have been proposed ~1'2~ to describe the observed behavior in the frequency 
domain, for example: 

�9 The Cole-Cole function 

1 
z(og) oc 

1 + (iog/ogn) v 

�9 The Cole-Davidson function 

(1) 

1 
;((o9) oc (2) 

( 1 + iog/oge)n 

�9 The Havril iak-Negami function 

1 
X(og) oc (3) 

{ ] + (iog/og,,)q" 

�9 The Williams-Watts (stretched exponential) function, being the 
Fourier transform of ~b(t), 

~b(t) = exp[ - (oge t) v] (4) 

The parameter cop is the loss peak frequency and the coefficients v and p 
in (1)-(4), assumed to fall in the range (0, 1 ), have no physical sense. 

On the basis of experimental observations it has been found I1~ that 
the dielectric response of most dipolar systems exhibits the following 
"universal" power-law response: 

and 

X'(og) oc X"(og) oc o9" -  1 for o9 >> cop 

zlX'(og) oc X"(og) oc co" for o9 < cop 

(5) 

(6) 

where the polarisation decrement d X ' ( o g ) = Z ' ( 0 ) - Z ' ( o g )  and the power-law 
coefficients in the range are 0 < n , m < l .  Note t1'2~ that the empirical 
functions (1) and (3) both have the power-law properties (5) and (6) with 
the coefficients n = 1 -  v and m = v for the Cole-Cole function (1), and 
n =  1 - v p  and m =  v for the Havril iak-Negami function (3). In contrast, 
the functions (2) and (4) fulfil only the high-frequency power-law relation 
(5) with the parameter n =  1 - #  for the Cole-Davidson function (2) and 
n = 1 -  v for the Williams-Watts function (4), while in the low-frequency 
region they satisfy 

Z ~ t ( W )  (3C 09 2 and X"(o9) oc o9 
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It should be stressed that although the empirical functions (1) and (3) 
satisfy both the power-law relations (5) and (6), they do not cover the full 
range 0 < n, m < 1 of the dielectric responses. Namely, it follows from the 
restriction 0 < v, p < 1 that for these functions only the range 0 < n < 1, 
1 - n ~ m < 1 is attainable. 

The interpretation of the physical basis of the observed universality (5) 
and (6) has occupied many workers() HT~ Historically the earliest attempts 
to reconcile the observed nonexponential relaxation with the classical 
Debye process was the assumption of the distribution of relaxation times 12) 
leading to a summation of the contributions of individual entities. The 
relaxation function of a system was expressed as a weighted average of 
exponential relaxation functions. There is no mathematical objection to use 
of this formalism, but the most serious objection lies in the observed univer- 
sality of the dielectric response, since this requires a proof of why the same form 
of distribution of relaxation times should apply in all the different systems. 

Recently there has been introduced a probabilistic representa- 
tion (ts'2~ of the cluster model 13"~~ for dipolar dielectric relaxation 
which yields the experimentally observed fractional power-law response (5) 
and (6) in the time domain 

f (~pt )  -'1 for t ~  1 / o 9 p  
f ( t )  OC 

- -- n)t 1 ( ( ( , O p t )  - for t>> 1/a)p (7) 

where f ( t )  is the response function. The rigorous mathematical approach to 
the dielectric relaxation, based on a revised definition of relaxation func- 
tion, ~8~ explains why the fractional power-law should be so universally 
applicable. As the necessary and sufficient conditions for it the probabilistic 
analysis supplies two forms of self-similarity governing the intra- and 
inter-cluster dynamics in dipolar systems. ~2~) Moreover, the time domain 
analysis ~21~ leads to the empirically observed restriction (0, 1) for the 
power-law coefficient n, while for the parameter m only the result m > 0 can 
be derived. It is worth noting that although the Williams-Watts response 
(4) does not fulfil the power-law relation (7), it can be obtained in this 
approach by neglecting the intercluster influences) 2t' 22) 

The purpose of the present paper is to discuss the frequency domain 
consequences of the self-similar laws obtained in the time domain 
stochastic analysis ~21) of the probabilistic representation of the cluster 
model for relaxing dipolar systems, namely, the frequency-domain power- 
law relations (5) and (6) observed experimentally and, consequently, the 
Kramers-Kr6nig-compatible frequency-independent rules ") 

X'(o9-----~ = cot n for o9 >> cop (8) 
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and 

X"(co) = tan m ~ for o) ~ mp (9) 
~x'(o~) 

are shown to follow from the probabilistic attempt to relaxation phenomena. 
The restriction (0, 1 ) for both the power-law coefficients n and m is proved 
to be the necessary and sufficient condition for it, and hence the theoretical 
functions derived from the stochastic analysis cover the full range 0 < n, 
m < 1 of dielectric responses. 

The presented frequency domain analysis not only completes the time 
domain results, (2j) but it also suggests how to extend the Havriliak- 
Negami function (3) to the full range of the observed dielectric responses. 
It makes it possible to compare directly the theoretical and empirical func- 
tions (1)-(3) by means of numerical methods. 123) 

2. PROBABILISTIC REPRESENTATION OF THE CLUSTER 
MODEL FOR DIELECTRIC RELAXATION 

The concept contained in the cluster model for dielectric relaxation 
represents a radical departure from the traditional picture of relaxa- 
tion.(~, ~o, ~2~ It is based on a realistic picture of the physical nature of the 
structure of an imperfectly ordered state and its consequences for the 
dynamics of its constituent species. The cluster structure of a dipolar 
system may be considered as a natural consequence of the fact that when 
the electric field is on, only some of the dipoles have enough energy and 
time to reach a configuration with the dipole momenta aligned along the 
field lines. Hence, the dielectric response originates with specific, spatially 
limited regions containing dipoles with positions altered by the external 
field and their local (random!) environment. During the relaxation process 
the strongly coupled local (intracluster) motions are expected to be 
generated first and then followed by the weakly coupled (intercluster) 
motions which produce the partial long-range structure. Each of these 
motions, those leading to the local structure order and those leading to the 
gross cluster array order, has its own characteristic contribution to the 
observed featuresJ 3" 10, 12) 

Unfortunately, the microscopic physical mechanisms governing relaxation 
in disordered systems are not known yet. It only can be concluded that such a 
widespread and specific deviation from exponential ideality implies that the 
fundamental physical principles governing relaxation must have a general form 
regardless of the detailed physical and chemical nature of the materials in which 
it is observed. This suggests also the general, based on statistical methods, 
mathematical description of relaxation processes in dipolar systems. 
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This point of view was taken into account in searching for the proba- 
bilistic representation of the cluster model for dielectric relaxation, t~8-23) 
The proposed probabilistic concept follows from the simple fact that the 
time up to which an aligned dipole survives in its initial orientation after 
removing the external electric field is random and depends on random 
intra- and inter-cluster influences. 

In the first approximation, the intercluster interactions are neglected 
and the exponential relaxation of an individual dipole is conditioned only 
by the value taken by its relaxation rate fl which reflects the random 
intracluster influence. So, if the relaxation rate of the ith dipole has taken 
the value b, then the probability that this dipole has not changed its initial 
aligned position up to the moment t, is 

Pr(Oi>>.tlflg=b)=exp(-bt) for t~>0, b > 0  (10) 

The random variable fl~ denotes the relaxation rate of the ith dipole and the 
variable 0i, is the time needed for changing its initial orientation (waiting 
time); ill, f12 .... and 01,02 .... form sequences of nonnegative, independent, 
identically distributed random variables. 

In a system consisting of a large number N of relaxing dipoles, the 
relaxation function ~b(t) has to express the probability that the whole 
system has not changed its initial state until the time t. So ~8~ 

~b(t) = lim Pr(Aumin(01 ..... 0~) >1 t) 
N ~ o o  

( l l )  

where A N is a suitable normalizing constant. 
It has been shown recently t21' 2,-1 that the assumption (10) leads to the 

unique form 

~b(t) = exp[ - (At) "] (12) 

of the relaxation function (11). Moreover, it follows from the probabilistic 
analysis ~22~ that the function (12) has to be interpreted as the Laplace 
transform of the completely asymmetric L+vy-stable distribution ~24~ and 
thus the parameter ~ has to be in the range (0, 1). The parameter A is a 
positive constant. Consequently, in the first approximation, i.e., when the 
intercluster influences are neglected, the relaxation function (11) cannot 
have any other than the stretched exponential form (4). The main mathe- 
matical reason for this is that, independent of a statistical distribution of 
relaxation rates fl;, the random variable 0; is finite with probability 1: 

Pr(O,.~> t [ f l~=b)= {10 fOrfor t=Ot_._, oo (13) 
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A broader class of dielectric responses is then available when the random 
time 0j depends on both the intra- and inter-cluster influences in such a 
way that it is infinite with some nonzero probability. If instead of (10) we 
postulate ~2~ 

Pr(0iN >~ t [ fli  = b, aTv i max(ql ..... q i -  i, qi+ 1 . . . . .  r / N )  = S) 

= exp[ --b min(t, s)] (14) 

for b > 0 ,  s > 0 ,  t~>0, then in contrast to (13) we have 

Pr(OiN>~ t I fli  = b ,  aN t max(q1 ..... r / i - i ,  r/i+ t ..... r/u) = s )  

I 
1 for t = 0  

= e x p ( - b t )  for t < s  

[ e x p ( - b s )  = const > 0 for t ~  

i.e., the random variable 0m can be infinite with some nonzero probability. 
This is in accordance with the cluster model, i3' lO. 12~ in which aggregates 
require an infinite time for relaxation. The random variable fli denotes the 
relaxation rate of the ith dipole and r/r is the time needed for the structural 
reorganization of the ith cluster (cluster relaxation time); fll,fl2 .... and 
r/t, q2 .... form independent sequences of nonnegative, independent, identi- 
cally distributed random variables. The random variable 

qi. N -  a~ I max(qj ..... r/r-1,1]i+ I ..... t lN)  

constructed from the sequence {r/i} has the meaning of a stopping time 
for exponentially decaying conditional probability (10). The variable 0;u 
denotes the time needed for changing orientation by the ith dipole (waiting 
time) in the system consisting of N relaxing dipoles; 0to ..... Ouu are non- 
negative, independent, identically distributed for each N; however, each 0m 
depends on the relaxation rate fir and on the stopping time th. N. 

It has been shown by time domain analysis ~2tl that for the whole 
system, satisfying (14), the relaxation function (11 ), 

q~(t) = lim P r ( A u m i n ( O i u  ..... OUN) >1 t) 
N ~ c o  

takes on a nondegenerate form if: 

�9 The distribution of relaxation rates fl~ belongs to the domain of 
attraction of the completely asymmetric L6vy-stable law, ~24) i,e., for 
s o m e 0 < c t < l  and a n y x > 0  

P r ( f l i > x b ) = x  - ~  Pr( f l i>b)  for large b (15) 
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The distribution of times of structural reorganization of the clusters 
r/; belongs to the domain of attraction of the max-stable law, ~25~ i.e., 
for some ~, > 0 and any x > 0 

Pr(rl i>XS)=X-~'Pr(rl i>S) for large s (16) 

The conditions (15) and (16) can be recognized as two forms of self-similar 
(fractal) dynamical behavior assumed to be a fundamental feature of the 
power-law dielectric response in the cluster model/3" 10, J2~ The first form is 
identified with the internal dynamics of the clusters t12~ and the second form 
refs to the way in which the response of the macroscopic system is built up 
from its cluster components/121 Other models ~7-8' TM 13~ identify only one 
region of fractal behavior, i.e., adequate to form (15). However, on the 
basis of experimental observations, it has been argued ~3" to~ that the relaxa- 
tion of dipolar systems involves two different self-similar regimes which are 
a natural consequence of interwoven cluster groups rather than site dipoles. 

The relaxation function ~b(t), Eq. (11), has been shown (21) to fulfil the 
following relaxation equation (a generalized master equation): 

~ t ( t ) = - - c ~ A ( A t ) ' - t { 1 - - e x p [  (A~--r.] } ~b(t) (17) 

where the parameters 0 < e < t, y > 0, A > 0, and k > 0 are defined by the 
L6vy-stable and max-stable laws. When k ~ 0, Eq. (17) takes the well- 
known form c8' 1o. 13) 

dO 
dt  (t) = -oLA(At) ~- 1 ok(t) 

with the solution (12) recognized as the Williams-Watts response (4). In 
the general case we get the solution of Eq. (17) in the form 

~b(t) = exp[ - c S ( t ) ]  

where c = k -~/~' and 

(kUli'At)a 
S(t) = f [1 - exp(-s-~'/~)] ds 

"~0 

A similar form has been obtained from different approaches ~sl (the F6rster 
direct-transfer model, the hierarchically constrained dynamics model, 
and the defect-diffusion model) analyzing nonexponential relaxations, with 
emphasis on the stretched exponential Williams-Watts form (4). The 
probabilistic representation of the cluster model for dipolar systems yields 
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also the Williams-Watts relaxation function (4), but as a special case when 
k --* 0. Although each model describes a different mechanism, they have the 
same underlying reason for the stretched exponential pattern: the existence 
of scale-invariant relaxation rates. 

The response function f(t), f(t)= -d~(t)/dt, obtained from Eq. (17), 
has the fractional power-law form (7) only when y>~0L The power-law 
coefficients n and m take the following forms: 

~ o~/k if y = 
m =  

( y - ~  if 7>0~ 

(18) 

Observe that since 0 <0 t<  1 the parameter n is in the range (0, 1). In 
contrast, for the parameter m only the restriction rn > 0 can be concluded. 

3. P O W E R - L A W  DIELECTRIC RESPONSE IN THE 
FREQUENCY D O M A I N  

The mathematical basis for the treatement of the frequency domain 
response rests on the Fourier transformation of the response function f(t), 
which defines the complex frequency-dependent susceptibility X(W)= 
Z'(co)-iX"(w). Hence, in terms of the result (17), the dielectric suscep- 
tibility 1,(o)) has the form 

{ E ]} X(CO)= ~A(At) ~-t 1 - e x p  (At)-". q~(t) exp(-iwt)dt (19) 
k 

Consequently, in the high-frequency region we have 

w~Z(w)= ~ o~A(At),_, [exp(_it)] {l _exp [ (At)-" 

2 . . . . .  ' C1 p - 1  e x p ( - i t )  dt 

where C~ is a positive real constant. Therefore we get 

Io X(W) t-"e-" dt 
c o n - I  co--co ~ Cl 
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where n is the high-frequency power-law coefficient; see Eq. (18). From the 
time domain analysis (2~) we have 0 < n <  1, and so, from the theory of 
complex functions, (26~ there exists the integral 

I : t - " e - ' d t : C 2 [ s i n ( n 2 ) - i c o s ( n 2 )  1 

where C2 is a positive real constant. Hence the dielectric susceptibility X(o~) 
given by Eq. (19) fulfils the high-frequency relation (5) and 

lim X"(~ ( 2 )  ~,- ~ X'(og) = cot n 

The above result, which holds also for the Williams-Watts relaxation func- 
tion, (22) is in agreement with the experimental rule (8). 

In the low-frequency region we have to investigate two distinct cases: 
y>0t and y=~.  When y > ~  

x(O)  - x (oJ )  

O.)Y - ~  

= c~A/k(At) ~-r-~ [ 1 - - e x p ( - i t ) ]  1--exp[--og~'(At)-r/k] 
oa"(At) -r/k ck dt 

and 

f? x(O)-X(C~ , C3 t~ - r - l (1  - e - ' )  dt (20) 
Oj}'-- ~ c o c O  

where C3 is a positive real constant. When y = 

x ( o )  - x ( co )  
(.0~1 k 

= aA/k(At) -~/k-I [ 1 - - e x p ( - i t ) ]  
1 -- exp[ --og"(At) -r/k] 

oar(At) -r/k 

and 

x(O) -X(oa) ' C4 t-~/k-t(1 --e -i') dt 
(.OCLIk ~o ~ 0 

(21) 
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where C4 is a positive real constant. From the above results, Eqs. (20) and 
(21 ), we get 

fo ~ 
x ( O ) - x ( c o )  , C t . . . .  ~(1-  e - " )  dt (22) 

(jjm ~o ~ 0 

where m is the low-frequency power-law coefficient [see Eq. (18)] and 
C =  C3 or C =  Ca. Hence the limit (22) depends on the value taken by the 
integral 

~: ~t . . . . .  '(1 - e - i ' ) d t  

which, from the theory of complex functions, t26) exists if and only if 
0 < m < 1, and then equals Q [ c o s ( m ( n / 2 ) )  + i sin(m(n/2))]; C5 is a positive 
real constant. Consequently, when 0 < m < 1 the low-frequency relation (6) 
is fulfilled and 

,",~ ( ; )  lim - tan m 
,o -o  z ' ( O ) - z ' ( c o )  

which is in agreement with the low-frequency empirical result (9). 
In this paper we have presented the frequency domain analysis of 

the probabilistic representation of the cluster model for a relaxing dipolar 
system. ~'s''9'21"-'2) The time domain considerations t21) have led to two 
forms of self-similar dynamical behavior of the system, Eqs. (15) and (16), 
yielding the time-domain power-law response (7) with the coefficients 
0 < n < 1 and m > 0. We have shown that both the restrictions 0 < n < 1 
(obtained earlier) and 0 < m <  1 are necessary and sufficient for the 
dielectric susceptibility derived from the stochastic analysis to fulfil the 
power-law relations (5) and (6), and consequently the Kramers-Kr6nig-  
compatible high- and low-frequency rules (8) and (9). Therefore, the 
theoretically obtained functions cover the full experimentally found range 
0 < n , m <  1 of dielectric responses, while the empirical functions ( I ) - (4)  
cannot fall in the range 0 < n < 1, 0 < m < 1 - n. 

A C K N O W L E D G M E N T S  

The author would like to thank Prof. Karina Weron for helpful dis- 
scussion and comments. This work was partially supported by KBN grants 
2 1153 91 01 and 2 P302 065 04. 



Dielectric Susceptibil ity 1003 

REFERENCES 

1. A. K. Jonscher, Dielectric Relaxation h~ Solids (Chelsea Dielectrics, London, 1983). 
2. C. J. F. B6ttcher and P. Bordewijk, Theory of  Electronic Polarisation, Vol. 2 (Elsevier, 

Amsterdam, 1978). 
3. L. A. Dissado and R. M. Hill, Proc. R. Soc. A 390:131 (1983). 
4. M. P. Shlesinger and E. W. Montroll, Proc. Natl. Acad. Sci. USA 81:1280 (1984). 
5. M. F Shlesinger, J. Stat. Phys. 36:639 (1984). 
6. E. W. Montroll and J. T. Bendler, J. Star. Phys. 34:129 (1984). 
7. R. G. Palmer, D. Stein, E. S. Abrahams, and P. W. Anderson, Phys. Rev. Lets. 53:958 

(1984). 
8. J. Klafter and M. F. Shlesinger, Proc. Natl. Acad. Sci. USA 83:848 (1986). 
9. S. H. Lui, Solid State Phys. 39:207 (1986). 

I0. L. A. Dissado and R. M. Hill, Chem. Phys. 111:193 (1987). 
11. G. A. Niklasson, J. Appl. Phys. 62:R1 (1987). 
12. L. A. Dissado and R. M. Hill, J. Appl. Phys. 66:2511 (1987). 
13. K. L. Ngai, A. K. Rajagopal, and S. Teitler, J. Chem. Phys. 88:5086 (1988). 
14. J. Klafter, A. Blumen, G. Zumofen, and M. F. Shlesinger, Physica A 168:637 (1990). 
15. P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams, and J. P. Carini, Phys. Rev. Lett. 65:1108 

(1990). 
16. K. L. Ngai, R. W. Rendell, and D. J. Plazek, J. Chem. Phys. 94:3018 (1991). 
17. H. J. Queisser, Appl. Phys. A 52:261 (1991). 
18. K. Weron, J. Phys.: Condens. Mattes" 3:9151 (1991). 
19. A. Hunt, J. Phys.: Condens. Mattes" 4:10503 (1992). 
20. K. Weron, J. Phys.: Condens. Matter 4:10507 (1992). 
21. K. Weron and A. Jurlewicz, J. Phys. A: Math. Gen. 26:395 (1993). 
22. A. Jurlewicz and K. Weron, J. Star. Phys. 73:69 (1993). 
23. A. Jurlewicz, K. Kosmulski, and K. Weron, Proceedings of "Dielectrics and Related 

Phenomena" Conference, (Zakopane, Poland, 1994). 
24. A. Janicki and A. Weron, Shnulation and Chaotic Behavior of  ~-Stable Stochastic 

Processes (Marcel Dekker, New York, 1993). 
25. M. R. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and Related Properties of 

Random Sequences and Processes (Springer-Verlag, New York, 1986). 
26. V. M. Zolotariev, One-dimensional Stable Distributions (American Mathematical Society, 

Providence, Rhode Island, 1986). 

Communicated by .L L. Lebowitz 

822/79/5-6-15 


